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The paper presents an interesting generalisation of  2-D filters known in image processing. The filters
presented in this paper can be used to 3-D objects processing  with analogous effects to 2-D ones.
Several attributes can be assigned  to each voxel in the processing 3-D object  (space co-ordinates,
colour, transparency, potential e.t.c.). Each of these attributes can be filtered. These filters can be used
to  surface smoothing, erosive filters delete small 3-D objects. The high-pass 3-D filters detect object
surfaces, draw power field isosurfaces e.t.c. Topographical and  biological applications are
demonstrated.

INTRODUCTION

Data in computer graphics are stored as coordinates of points that, as in the traditional Euclid
geometry, are modelled as dimensionless objects. The displaying device is, however, a
physical object and, as such, cannot display or read "dimensionless points". For this reason,
instead of point, the word "pixel" is used. However, in mathematical modelling, pixels in the
"logical" sense have to be considered (that is, the output device is thought of as a set of
isolated Euclidean points) as opposed to the "physical" sense (where the output device is
taken to represent a "set of elementary small surfaces").

In the nawadays literature, these differences are mostly ignored. Nevertheless, even in cases
where the difference is made between these notions, their definitions are very vague and
sometimes even false. Exakt mathematical definitions of these terms enable great
generalisation and interesting applications. I will demonstrate this fact on so called 3 D−
filters. This theory is unprecedented. This article introduces  new terms, theorems are
presented for illustration only and they are cited without proofs. More detailed information is
acessible in [1].
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1.3. Theorem: Let ( ))()()( ; nnn DJ=D   be the digital space, )(, nBA J∈  arbitrary points of  its

support.  The relation   )()( nn JJ ×⊂ρ  defined on  ( )nJ  by
)()()()( :),( nnnn BABA iii FFF ∈∧∈∈∃⇔ρ F

is an equivalence on )(nJ  .

1.4. Definition: The factor set  ρ= )()( nn JF , where ρ is the equivalence from the previous

theorem, is called the physical space of  )(nJ  or ( ))()()( ; nnn DJ=D  respectively.

In many applications we use the so-called logical space and logical domain. Somethimes it is
important to which (Euclidean) point of the physical somain we are referintg – its centre,
vertex, etc. Thus by a logical domain LC i  we mean a representative of the physical domain

)(n
iF , the logical space )(nLC  being the set of all the logical domains LC i :
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The process of assigning logical pixels to physical ones (the choice of representatives) is
called mapping.

1.6. Theorem:  Let  )(nF  ( )(nLC ) be the physical (logical) space of ( )nD . Mapping
)()(: nn LF CC →ϕ  such that ( ) )()()()( nnnn LL iiCiCiC FF ∈⇔=ϕ  is a bijection.

1.7.  Definition: The mapping )()(: nn LF CC →ϕ  from previous theorem we call the physical
space mapping.

Notice: To model a 2 D−  digital space we can use virtually any output device such as a
monitor, printer, etc. The term domain is a generalization of terms pixel ( 2 D−  domain) and
voxel (3 D−  domain) which are used in nowadays literature. They are also important for
constructing surfaces by interpolating the graph of a function in two or three variables where
the function values are known at equidistant points.



2. VALUATION AND FILTER

Classical Euclid synthetic geometry models its objects by study of elements of subsets of
space nE .  Defining subset of nE  (Euclid objekt  ) we set a formula which determines
wheter ∈X  or ∉X   fo each nEX ∈ . We can formaly denote this formula as a
mapping { }1,0: →ρ nE , whereas ∈⇔=ρ XX 1)( . Analytic geometry models its object by
mapping : n

nEϕ → , that assignes the co-ordinates to points

Performing similar construction in the physical space, it is posible this way to determine
subsets of this space - physical objects. Define )()( nn FF ⊆  and { }1;0: )( →ρ nFF  such that

( ) )()()()()( 1: nnnnn
FFF ∈⇔=ρ∈∀ iii FFF . It is evident, the set  )()( nn FF ⊆  determine the

mapping Fρ  and conversely. The situation is identical for the logical space too.

It is obvious, that each physical space is a metric space. Function
( ) { }nkkkk

nnn jic 1
)()()( max; =−=ji FFFC   is a metric  on  )(nF   for example.

2.1. Definition: Let )(nF   be the physical space, A  arbitrary  set, which contains minimal
two elements. Mapping  An →β )(: FF   we call a valuation of  )(nF .

2.2. Definition: Let ( )µϕε ,,)(nF*  be the physical space with mapping ϕ  and metric µ ,

( )µϕ,,)(nF   its subspace such that ε -surrounding of each physical domain )(nF∈F   contains

the same number of elements in )(nF*ε .  The space )(*)( nn FF εε =  is called ε -hull of )(nF
(considering metrics µ ).

2.3. Definition: Let An →β )(: F  be a numeric valuation of )(nF ,  An →β εε )(: F  valuation of

its ε -hull such that for every )(nF∈F  is ( ) ( )FF β=β ε . Valuation An →β εε )(: F   is called ε -

hull of  valuation An →β )(: F .
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Function  f   is called a linear filter.



3. SURFACE SMOOTHING AND TERRAIN MODELLING

The image is defined as a function VHWI →×: , where )0;W w= ⊂ ;w∈ ;

)0;H h= ⊂ ; h∈ ; )1 2;V v v= ⊂  in classic image processing. Considering previous

theory image is m -arity valuation { }(2): 0,1,..., 1mβ → −F . Value set )1 2;V v v= ⊂  of this
function is interpreted as a colour set obviously. The value of a pixel, however, can also be
thought of as its height, then the graph of the function ),( yxfz = - is modelled as a 3-D
surface. Constructing this surface by using computer, it is necessary the definition set  HW ×
take as physical space and function as real valuation (2):β →F . Filtering this valuation we

obtain the valuation  (2):
f
βΦ →

Φ
F . The filters in this interpretation change the height of

points and make posible to model D−3  objects.

Fig. 1: Smoothing of the Czech republic topographic terrain

The Fig.1. shows the topographic terrain of the Czech Republic. In the right hand part there
are the input data. These data was filtered by linear filter on def. 2.4., where
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( 3ε = , 6ε =  is used in the middle or on the left respectively).

4. OBJECT FILTER AND  BORDER SURFACE DETECTION

Border surface detection is very important problem in computer graphics and data
visualization. Today common used methods are based on vector principle and are very
complicated. They calculate intersections of "viewing rays" with processed objects. They
solve particular events only and are not very consistent. Very problematical terminology is
used ("manifold solid", "ring edges" "crease angle", "winged-edge") inclusive of  quite
incorrect  terms  ("solid normal", "vector normal to solid", e.t.c). Filter apparatus is very
efficient for this problem.



4.1. Definition: Let )(nF  ( )(nLC ) be a physical (logical) space. Its arbitrary subset )(n
F

( )(n
L )  we call Dn −  physical (logical) object.

4.2. Definition: Let  An →β )(: F  be a valuation of physical space )(
  
nF , ( )n⊆ F  an

arbitrary  n D−  physical object. The function : rf →  is called an object  n D−  filter of
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(for logical object by analogy).

Object  n D−  filter is different from space n D−  filter. We sum not through all surrounding
( )Oε iF , but through intersect this surrounding with object - ( )Oε ∩iF .

Binary valuation { }( ): 0;1nβ →F F  of physical  space determine the physical object
( )n⊆F F . This fact is a principle the simplest 3 D−  object reconstruction method - the

voxel reconstruction method. Physical voxel is modelled as a box, which is only and if only,
when     ( ) 1β = ⇔ ∈F FF F .

In the left hand part of Fig. 2. we can see the voxel reconstruction of a protozoon
Paramethyum organella part. This reconstruction is quite raw in itself but it is useable as a
ground for more accurately technique

Fig. 2. Object moulding by using  the 3 D−  object filters

Let  ( )n⊆ F  be arbitrary n D−  object, (3); ; :X Y Zβ β β →F   are valuation of this space

such that for all (3)
ijk ∈F F  are  ( )X ijk iβ =F ,  ( )Y ijk jβ =F , ( )Z ijk kβ =F . Using the  object

linear 3 D−  filter according to def. 4.2. where  ( )C t  is given by  (3.1.) we smooth a  object
surface. We can see this shmoothing in the middle part of Fig 2.



Using the same technique linear filter, for which is
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we are able to detect and construct the surface of  3 D−  object. We can see this detection in
the right hand part of Fig 2.

Fig 3:  Object reconstruction  by using of 3 D−  filters

The using of  3 D−  filters to 3 D−  data reconstruction is more effectively than nawadays
used methods (marching cubes, marching triangles, dividing  cubes etc.) and  presented
comparable results.

I have used data scaned by Prof. MUDr. Roman Janisch, DrSc. from LF MU Brno. I thank
him for his cooperation.
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